(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Rewrite Strategy: FULL

(1) CpxTrsToCpxRelTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to relative TRS where S is empty.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

S is empty.
Rewrite Strategy: FULL

(3) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
a__U11(tt, M, U11(tt, X257_4, X358_4)) →+ s(a__plus(a__U11(tt, X257_4, X358_4), mark(M)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [X358_4 / U11(tt, X257_4, X358_4)].
The result substitution is [M / X257_4].

(4) BOUNDS(n^1, INF)